从心理学角度看,“猜想”是一项思维活动,是学生有方向的猜测和判断,包含了理性的思考和直觉的判断;从学生的学习过程来看,猜想应是学生有效学习的良好准备,它包含了学生从事新的学习或实践的知识准备、积极动机和良好情感。一说起“猜想”,人们马上就会联想到著名的“歌德巴赫猜想”。学生的学习过程,并非要出现像“歌德巴赫猜想”那样的著名推断,但应具有知识的“再发现”和“再创造”过程。培养学生的猜想意识,引导学生进行积极的猜想,正是培养学生进行知识再发现和再创造的良好开端。
教学片段一
在学习完“圆的面积”后,教师让学生做这样一道题:“有两块大小一样的正方形钢板,其中一块冲出4块大小一样的圆形钢片(如图1甲),另一块冲出9块大小一样的圆形钢片(如图1乙)。问哪一块钢板所剩下的脚料多?”立刻有学生大胆猜想:
生:图1(甲)所剩下的脚料多一些,因为图1(甲)看起来空隙大。
生:图1(乙)剩下的脚料多一些,因为图1(乙)的空隙多。
可见学生这时的猜想是盲目的。教师对这些猜想没有简单地否定,而是让学生解决一个简单的问题(如图2),求正方形内切圆的面积占该正方形面积的百分之几?计算后得出,正方形内切圆的面积占该正方形面积的78.5%。这时再让学生猜想。
生c:所剩下的脚料一样多。
师:为什么?
有一个学生将图1中的(甲)、(乙)两图添作辅助线,如图3所示。他说:“正方形1/4的78.5%再乘以4和正方形1/9的78.5%再乘以9其结果</PGN0251.TXT/PGN>是一样的。”虽然表述不是很完整、到位,但能提出这样新的假设,充分体现了学生的创造潜能。最后通过计算验证,使学生享受到猜想的成功。
教学片段二
在一次课上做练习时,有一个平时就很爱动脑筋的学生突然说:“老师,我有一个奇怪的发现,我量了量桌子的长和宽,发现长是宽的1.6倍多一点,又量了量数学课本的长也是宽的1.6倍多一点,再量作业本结果也是一样的。我想,这里一定有数学问题。”
一石激起千层浪,别的学生也动手量起来,不一会儿,有的学生说:“对,是这样。”有的学生反对:“这是偶然,铅笔盒、黑板就不是这样。”
一会儿,教室里的争论声小了下来,学生的眼睛齐刷刷地望着老师。老师首先对那位学生说:“你善于观察,又勤于思考,很了不起。”接着,老师说:“想想生活中还有哪些长方形和你们的课桌比例差不多?”学生举出了生活中的许多例子。
http://m.tlutl.com/gaozhongzuowen/27840/
推荐访问:板块模型解题思路ppt 幼儿园课题研究题目参考 板块模型解题思路 建立数学模型的意义 几何图形的初步认识思维导图 周期问题的解题思路 数学模型的建立 随机信号分析基础答案 物理板块模型解题思路 物理板块模型总结ppt 板块模型的四种情况 高中物理板块模型思路 板块滑动模型解题思路 高中物理板块模型ppt 高中物理板块模型归纳 高中物理板块模型总结 高中物理板块模型解题方法 物理板块模型分析总结 滑块木板模型类型归纳 物理滑块模型解题思路 传送带模型7种情景分析 板块模型相对位移 高中物理板块模型题